
What is The Difference Between Artificial Reality and Virtual Reality
Virtual reality (VR), artificial reality (AR) and mixed reality (MR) have attracted a lot of interest in the last decade. But many do not know the difference between the two terms. Though they are related technologies, virtual reality and artificial reality are different. This article will describe the two technologies, how they are similar, how they are different, why those differences matter, and the current software developing opportunities in AR and VR.
Artificial Reality
Let’s start by defining artificial reality, also known as augmented reality. AR involves enhancing a physical environment by overlaying it with digital information. The digital information and the real world interact and complement each other to create an augmented world.
Examples of Artificial Reality

Artificial reality is used in games, apps, and even sports. Some popular examples of artificial reality include Pokémon GO, IKEA Place app, and the yellow down line in televised football:
AR Hardware
Sometimes AR uses special hardware, such as glasses or headsets, but more often it requires only a screen and a camera, like a smartphone. To map digital information onto real-world environments also requires sensors, such as a global positioning system (GPS) receiver, a solid state compass, and an accelerometer. The combined positioning technologies allow smartphones to recognize a physical location and match it with information associated with that location. For example, digital reviews and ratings can be superimposed onto the camera view of physical restaurants.
AR Software
The software required for artificial reality is multipronged. AR needs positioning technologies, which involves real-world coordinates and tracking technology that recognizes locations via markers or sensors. The data standard language for artificial reality is called Augmented Reality Markup Language (ARML). AR software developers most use C#, C++, and Java programming languages.
Future Applications of Artificial Reality

Several applications of artificial reality are currently in development:
AR technology is making its way into several industries. Its ability to enhance the user experience and consolidate information makes it a leading area of entrepreneurial research. So the software development opportunities for AR are growing rapidly.
AR Market Growth
The artificial reality market is projected to grow exponentially in the next few years. It will go from an estimated 10.7 billion USD industry in 2019 to a 72.7 billion USD industry by 2024. Investing in AR technology today could produce a substantial return on investment, so the time to pursue AR software development is now.

Virtual Reality
While AR enhances the physical environment, virtual reality (VR) immerses the user in an entirely new one. Virtual reality involves a simulated experience within a computer-generated, three-dimensional environment. That environment can reflect the real world or a fantasy one. Virtual reality is most commonly used in the video game industry, but it is also starting to appear in educational and training programs.
Examples of Virtual Reality

The beauty of virtual reality lies in the limitless possibilities for its applications. In the video game industry alone, endless amounts of fictional worlds are conceivable. Plus, many existing video games can and have been developed into VR versions. This is true for video games as old as Tetris and as new as the first-person shooter Half-Life. Even board games like Settlers of Catan can be made into VR games.
VR Hardware
VR requires different types of hardware, but it almost always requires some type of headset. A headset isolates the viewer within the virtual world, immersing them completely.
Sometimes VR requires additional hardware, like special glasses, gloves, or bodysuits. These allow users to navigate their environment with sensory, haptic, or motion-tracking technology. Often VR requires optical tracking systems like infrared cameras, too.
VR Headsets
VR headsets can be tethered or standalone. Tethered VR headsets require a connection to a PC, meaning they cannot function on their own. Standalone VR headsets can operate independently. Choosing a type is a matter of preference, but tethered VR devices are most common for gamers. Standalone VR headsets are better suited for simpler VR experiences like viewing a virtual museum.
Some popular VR headsets include the Oculus Rift, HTC Vive, Sony PlayStation VR, and Google Cardboard:
With each of these platforms, users enter a new universe. Apart from your bodily motion, you are disconnected from the real world. When you turn your head, you shift your perspective within the virtual world. When you grab with your hand, you reach into the virtual world, and so on. You are completely immersed in a virtual world.
VR Software
Software development for VR is intensive because it involves coding an entire virtual environment. The simulated experience is derived completely from code. As a result, programming VR applications requires a high-end computer and advanced programming skills.
Most VR applications are coded in Unity game engine, which typically uses programming language C#. Alternatively, the Unreal game engine also develops a lot of VR applications and uses coding language C++. Especially if you want to program VR video games, knowing C# or C++ is a must.
Other Applications of Virtual Reality

But video games are not the only technology that use virtual reality. VR is beginning to emerge in the training, education, and engineering sectors:
VR is attracting the interest of a variety of industries, including but not limited to defense, education, construction, engineering, healthcare, and business. Virtual reality’s heavy reliance on code makes it a versatile medium. And the massive costs saved by incorporating VR incentivizes companies to invest in the technology.
VR Market Growth
Though it does not share as large of a market size as AR, VR is also a fast-growing industry. The estimated 7.9 billion USD VR market in 2019 is projected to grow to a 44.7 billion USD market by 2020. Again, the opportunities for VR software development are very promising, and it is better to get in the market now than later.

Similarities Between AR and VR
To be sure, VR and AR are related technologies:
Differences Between AR and VR
Though artificial reality and virtual reality are related, there are key differences:
Why the Differences Matter
Knowing the differences between AR and VR is important for not only users but for software developers. AR development focuses on integrating GPS data with digital information and camera technology. VR focuses on programming a virtual environment that can be maneuvered by a real person. So VR and AR software development require different programming skills.
Fortunately, there are software development kits (SDKs) and APIs for both AR and VR. An SDK is a collection of software development tools that come in an installable package and make developing software easier. With SDKs, you have a framework and template from which to work.
If you want to program an AR app, consider Google’s ARCore or Apple’s ARKit. Or explore the several other artificial reality SDKs out there. Simply choose one that best suits your project and skills.
If you want to develop a VR app, look into which platform you want your VR app to run on. Most major VR platforms, like HTC, PlayStation, and Oculus Rift, have their own SDKs available to use.
Whatever your interest in VR or AR, it is important to know what each can offer. That way, you can pursue the one appropriate for your project.
Outlook for AR and VR
The future of AR and VR is promising. The technologies are growing fast and the ability to develop programs for them has never been easier. AR and VR will have a major impact on video gaming, online business and marketing, social media, education, and professional training.
Fortunately, the markets for both AR and VR have plenty of room for competition. They are not yet dominated by only a select few players.
But the dominant AR market players include Google LLC, Seiko Epson Corporation, Vuzix Corporation, RealWear Inc., Toshiba Corporation, and Vuforia.
And the major VR market players are Oculus VR LLC, Sony Corporation, Samsung Co. Ltd., Google LLC, and Lenovo Group Ltd.
Sources:


No matter the industry, AR and VR will always require substantial software development. If you are interested in AR or VR software development, consider the many industries looking to incorporate them into their businesses. I have mentioned some, but there are many more worth looking into, not to mention some that have yet to consider AR or VR at all.